
je ne sais quoi. However, the Internet should
revive interest in his works.

We can acquit Gombaud of two specific
charges. He was not a con man; he was not even
much of a gambler. He was a mathematician
interested in probability (he would not have
accepted that designation, however, one of his
aphorisms is “a philosopher who descends to
mathematics is like a suitor refused by the mis-
tress, who seduces the housemaid instead”). He
was accused of cheating for the same reason that
blackjack card counters are accused today, he
used his brain in competition with people who
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The Dakota Option Part III
Applying Dakotas to options that cannot be settled before expiry

Aaron Brown

T
wo issues back, I intro-
duced the Dakota option,
a cash settlement deriva-
tive with a defined pay-
out at expiry, which can
be exercised by the hold-

er at any time before or after expiry
for the Black-Scholes value of a vanil-
la European option with the same
expiry payout. Last time I applied
Dakotas to hedging employee stock
options. Now I’m going to consider
fair payment for options that cannot
be settled at expiry.

The chevalier
This problem has a grand tradition in
applied mathematics, dating back to
Antoine Gombaud (1607-1684).
Gombaud appears in every introduc-
tory statistics textbook, but is
described variously as a “nobleman,”
“con man,” “dandy,” “aristocratic
gambler” or “mathematician.”
Depending on the book he is identified as either
“chevalier de Méré” or “self-styled chevalier de
Méré.”

In fact, Gombaud was the first and most
important theorist of salons and his books were
important for two centuries after his death. His
current neglect can be blamed on the degenera-
tion of his ideas into dandyism, and their contri-
bution to the violent excess of revolutionary
France. Democracy through transparent institu-
tions run by dour middle-class Protestants won
out over vibrant culture sustained by exclusive
networks of intellectual Catholics imbued with

preferred stupid opponents. He also
was not an impersonator. He wrote
dialogs in which the character “cheva-
lier de Méré” represented his opinions,
a common literary form of the time.
He did not represent himself as a
chevalier (knight) in person.

The interrupted dice game
and the extended dice game
In 1654, Gombaud was asked to arbi-
trate a dispute. Two gamblers had
begun a common dice game of the
time. Each player picked a number. A
six-sided die was rolled repeatedly; the
first person whose number came up
seven times was the winner. This game
lasts an average of 33 rolls, but will go
twice as long or more every 500 games.
In this case, the game was called off
with one number having come up five
times and the other four. The gambler
who was ahead felt he was entitled to
some payment, the question was how

much?
Gombaud talked the matter over with his

friend Blaise Pascal1, who figured out the
answer (6/16 of the stake) in five letters
exchanged with Pierre de Fermat. To solve the
problem, Pascal invented his triangle and
Fermat reinvented Cardano’s algebraic probabil-
ity theory and communicated it to Christian
Huygens, who published the first important
work on probability, De Ratiociniis in Ludo Aleae
("On Reasoning in Games of Chance"). Then it’s
Huygens’ student Leibnitz, the Bernoullis and all
that. Probability theory was born. Over three

The overtime problem was more tiresome than Gombaud had anticipated
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hundred years later, the Black-Scholes model can
be viewed as a mathematical elaboration of this
problem, you know the future payoff of a bet and
you want to compute the fair value today.

What if Gombaud had asked how to modify
the stake for a game that continued beyond its
original payout time instead of an interrupted
game? Suppose that the score were seven to six,
what would be the appropriate stake to continue
the game until one number comes up nine
times? If Gombaud had asked that, the history of
applied mathematics might have been different
and we might have had a Dakota option pricing
model before Black-Scholes.

At first consideration, the overtime problem
is the inverse to the interruption problem. When
the score is five to four, the first player has 11/16
chance of getting to seven first so his expected
winning is 11/16 – (1 – 11/16) = 6/16. Similarly,
when the score is seven to six, the first player has
11/16 chance of getting to nine first. If he gives up
the sure stake he receives if the game is terminat-
ed as originally agreed, the stake for the extended
game must be 16/6 times the original amount. If
the original game were to play to seven for
$3,000, the player ahead five to four must be paid
$1,125 to stop the game early and the player
ahead seven to six must have the stake raised to
$8,000 to agree to extend the game to nine.

But the second problem is actually ill-posed .
It has an infinite number of solutions. If the ini-
tial stake is S, the first player can receive any
amount W for winning the extended game, as
long as he pays 2.2 × W–3.2 × S for losing.

The problem is also highly sensitive to initial
conditions. Instead of assuming equal probabili-
ties of winning each point, suppose the first
player has probability p of winning. In the inter-
rupted game problem, the appropriate payment
is 6p4–16p3 + 12p2–1. This is a well-behaved
function with range –1 to 1. The interrupted
game solution is the inverse amount, which
among other problems, becomes infinite at
p = 0.3857.

The option game
An option is just a gambling game, with payoff
defined at expiry. Black and Scholes showed how
to compute the fair payment to get into or out of
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the game before expiry. We want to compute the
fair adjustment to continue the game past
expiry. Consider a European call option allowing
purchase of one share of stock for $100 at time T.
At time T, due to some unforeseen circumstance,
the markets are closed and no price information
is available. Or there is a legal dispute about own-
ership of the option, or the nature of the under-
lying or whether or not the option was exercised.
It is now T + X, the market is open, price infor-
mation is available and all disputes are resolved.
The stock price is ST+X , what is the fair payment
to settle the option?

One approach is to assign blame for the diffi-
culties at expiry and resolve the dispute to the
disadvantage of the party at fault. But what if
neither or both parties are at fault? In any case,
both parties might prefer in advance to settle
things fairly regardless of fault in order to
reduce risk and legal expense. Another approach
is to reconstruct the situation at time T and fig-
ure out what should have happened. That also
may not be possible or desired by the parties. The
biggest objection to both these approaches is
they have to be argued while ST+X is known. It’s
much easier for two parties to agree on a fair
solution before either one knows what ST+X is
going to be.

The definition of a “fair” solution in this case
is one that both parties would accept at time T, if
the markets were open, price information were
available and there were no disputes. The value
of the option at T is max(ST –100, 0). We want a
function C(ST+X) such that at time T, for all ST ,
the risk-adjusted net present value of receiving
C(ST+X) at T + X equals max(ST –100, 0).
Unfortunately, the Parts I and II of this series
demonstrated that there is no well-defined func-
tion C that meets this requirement.

A solution is possible if we relax the “for all
ST ” condition. After all, if the option is clearly in
or out of the money at time T, no dispute is likely.
Suppose that the volatility over interval X is 1 per
cent and interest rates are zero. Then the piece-
wise-linear function C defined below generates
the correct values at time T to the nearest penny
for ST ≤$105. This is five standard deviations in
the money, which should be enough for 
practical purposes.

ST+X C(ST+X)

105 -$35
104 $44
103 -$27
102 $20
101 -$8
100 $2
99 -$1
98 $0
97 $0

The trouble with the solution is the required
payments at T + X are large and erratic. Both
parties must be prepared to pay amounts more
than ten times any likely value of the original
option. Small changes in ST+X lead to large
changes in payout. Moreover, if ST is even a little
higher that $105, the solution breaks down. The
value at ST = $106 is $23 instead of $6, at ST =
$110 it’s $201 instead of $10.

By loosening the restrictions further to allow
errors of up to $0.25, the following more reason-
able piecewise linear function is a solution:

ST+X C(ST+X)

103 $4
102 $4
101 -$4
100 $4
99 -$1
98 $0
97 $0

Discrete inquiry
To get a more general solution, we need to
loosen the restrictions in another way, we must
discretize the option. This is a different type of
discretization than usual in option pricing. For
binomial option pricing, we discretize in order
to allow perfect hedging, since there are only
two possible scenarios for each decision point,
we can hedge any derivative with two instru-
ments (typically the underlying and the risk-free
asset). It is also common to make the problem
discrete in order to program it on a computer or
solve it by elementary mathematical methods.
We discretize as an approximation, and make
the discrete interval as small as possible or even
let it go to a limit of zero.



uous option is worth a little more than $2, but
the discrete option will be worth a little more
than $0 or a little less than $4 depending on
whether the stock was below $100 more recently
than it was above $104.

Now for some mathematical sleight of hand.
We assume the market shuts down at some point
before option expiry. At that point we have no
price information about the stock. It remains
closed after expiry for a period in which the
stock has 1 per cent volatility. Upon reopening,
the stock price is ST+X . We want to find the fair
settlement value for the option.

The following shows possible stock prices and
continuous call values at time T, then possible
stock prices and settlement prices at time T + X.
Notice that for any ST , CT is equal to the average of
the CT+Xs for ST+X = ST + 1 and ST+X = ST − 1.
Since interest rates are zero and the volatility is
$1 (I am using arithmetic steps instead of the
more usual geometric for simplicity, but the
result does not depend on it), this means that an
investor is indifferent between receiving CT at T
or CT+X at T + X.

ST CT ST+X CT+X

110 10 110 10
109 9 109 8
108 8 108 8
107 7 107 8
106 6 106 6
105 5 105 4
104 4 104 4
103 3 103 4
102 2 102 2
101 1 101 0
100 0 100 0
99 0 99 0
98 0 98 0
97 0 97 0
96 0 96 0
95 0 95 0
94 0 94 0
93 0 93 0
92 0 92 0
91 0 91 0
90 0 90 0
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In this case, we are redefining the option
itself, to get a security we can solve forward. We
need the discrete interval to be large enough to
tame the dynamics of forward evolution. We rely
on financial intuition to tell us that the value of
the redefined option is similar to the actual
option, so that our solution for the discrete
option is a good solution for the actual option.

In this case it is convenient to restrict the
underlying stock price to multiples of $4.
However, we cannot simply round to the nearest
$4, that would give unstable dynamics.
Whenever Brownian motion crosses a barrier, it
crosses it an infinite number of times. If we
rounded to the neared $4, when the price
crossed $2 it would switch from $0 to $4 an infi-
nite number of times. Instead the discrete stock
price will start at $100 (the same as the stock)
and not move at all until the continuous stock
price goes under $96 or above $104. At that time
the discrete stock will switch to $96 or $104, and
not change unless the continuous stock crosses
another $4 boundary. The continuous stock
price’s infinite ups and downs from just below
$104 to just above $104 do not affect the discrete
stock price. Notice that the discrete stock price is
a path-dependent function of the continuous
stock price, which means that the option on the
discrete stock price is a path-dependent option.
This is the trick that will allow us to evolve the
option price forward beyond expiry.

We cannot use Black-Scholes to compute the
value of the option on the discrete stock price.
However, we can easily compute the Black-
Scholes option value if we round the option pay-
off to the nearest multiple of $4. An at-the-money
one-year option with 32 per cent volatility and
zero interest and payout rates is $12.71 for the
continuous payout and $12.70 for the rounded
payout. So moving from continuous to discrete at
$4 intervals does not matter much. From a year
away, the difference between the rounded and
hysteretic discrete options should not be signifi-
cant to an investor. The latter will just add a very
nearly unbiased gamble to the option payoff.

Although the difference between the contin-
uous option and the discrete option is small at
time of origination, it can be large near expiry.
For example, if the stock price is $102 the contin-

CT+X is merely the option price rounded to
the nearest $4, with the difference split for stock
prices exactly in the middle. Therefore the prop-
er settlement for the hysteretic discrete option is
simply the rounded discrete option payment.
The market closure wiped out the path informa-
tion needed for the hysteretic discrete option
price, which is exactly compensated by the addi-
tion time to expiry.

How useful is this result? It depends on the
balance between the discretization interval 
and the amount of volatility between expiry 
and market reopening. This is obviously
unknown at the time the option is written. If 
the volatility is large relative to the total volatili-
ty over the life of the option, the discretization
interval is large enough to affect the option
value and the argument breaks down. Also, 
even if the discretization is negligible initially, 
it will be important near expiry both due to
stock price and volatility changes. This, in turn,
means the discretized settlement terms for 
market closure will no longer be fair, they will
affect the trading price of the option.

I think these ideas are most useful for
options that are not intended to trade 
frequently on relatively illiquid underlyings, 
for which market disruptions are common 
but reasonably short. I admit I have never 
found an application I would present as 
practical, but neither have I given up hope. At
this point Dakota options are an interesting 
academic exercise. Playing with them can
improve your applied mathematics skills 
and deepen your understanding of options
before expiry. A breakthrough theorem that 
provided a general pricing insight would be a
major accomplishment.

1. The intellectual firepower assembled for such a minor

problem, and the enormously productive result, gives strong

support to Gombaud’s ideas of salon interaction.

■ Tikhonov, A.N. and V.Y.Arsenin (1977), Solutions of Ill-

posed Problems Winston, Washington
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Now some mathematical sleight of hand...


